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a > g i y  1. INTRODUCTION 

Because a superconductor is diamagnetic, it experiences a force when immersed 
in a nonuniform magnetic field. This Report gives the result of the calculation of 
the force acting on a sphere of zero permeability in an arbitrary magnetic field. 
The solution is obtained by expressing the applied field in a series of complete 
spherical harmonic functions, determining the induced field required to satisfy the 
boundary condition B,,,,,,,l 1 = 0, then integrating the Maxwell stress tensor over 
the sphere's surface. The final result appears as sums of products of the expansion 
coefficients of the applied field. To make the result more useful, it is also shown 
how to express the field due to an array of coils having concurrent axes in a series 
of spherical harmonics and, for the purpose of computing restoring forces, the 
applied field is expanded in a Taylor series expansion in the displacements. Two 
simple examples are shown. 
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II. SPHERICAL HARMONIC FUNCTIONS 

The complete set of normalized spherical harmonic functions 

(1) 
Py1 (p) e i m @  

y;" (p, +) == (-1)'/z(m+Iml) [(21 + 1) (1 - lm1)!/2(2 + ImI)!] 
(2,)*,z 

where 

is chosen for representing the magnetic field because of 
its appropriateness to a spherical boundary and because 
of the following useful properties (Ref. 1): 

1 if I = p and m = q 
0 otherwise 

( 2 )  Yr* YX dpd4 = 

= I ( 1 +  1)Y;" 

a L z Y y e  - i-Y;" =my;" 
84 (3) 

2 

where 

m + 1) (1 - m + 1) "* 
(21 + 1) (21 + 3) 1 A? = [(' + 

BY = [ (1 + m) (1 - " ' ] ' / Z  

cy = [" + 

(21 - 1) (21 + 1) 

m + 2) (I + m + 1) 
(21 + 1) (21 + 3) 1 
m) (I - m - 1) v.. 1 0;" = [ ( I  (- 

21 - 1) (22 + 1) 

m + 2) (1 - m + 1) 
(21 + 1) (21 + 3) 1 E? = ['I - 

[ ( Z  + m) (1 + m - 1)]'/2 
(21 - 1) (21 + 1) F;" = 

G;" = [ ( I  + m + 1) ( 1  - m)]"' 

"I" = [(I + m) (I - m + l)]" 

a2 = ($ - +) R 

B ~ = ( ~ + = ) R  d 
T 

The first few spherical harmonics are given explicitly: 
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111. M A X W E L L  STRESS TENSOR 

The force on a permeable body is found by integrating 
the Maxwell stress tensor over its surface: 

Given a perfect Meissner effect, Bnormal = 0 at the surface 

IV. EXPRESSION FOR THE M A G N E T I C  FIELD 

The scalar potential Q., of the applied field B, is ex- 
pressed as an expansion in complete spherical harmonic 
functions about the center of the sphere as an origin (see 
Fig. 1 for the coordinate system): 

The induced field combines with the applied field to 
satisfy the boundary condition Bnor,,,,,l = 0 at the surface 
of the superconductor. Hence 

The induced field resulting from the Meissner effect can 
be written which implies 

1 
I +  1 ai,,, = - R"+l bl, -B, = V U Z ~  Y y  (p, +) 

I , ,  

3 
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p = c o s @ =  I 

t 

Fig. 1. Coordinates for analysis of 
magnetic force 

Then the resultant scalar potential is 

and the resultant field is 

At r = R: 

by virtue of the boundary condition. Hence the field 
squared on the sphere is given by 

where 

V. EXPANSION OF S? IN SPHERICAL HARMONICS 

Thcx principal difficulty in the calculation is to express B ;  in a series of products 
of spherical harmonics so as to be able to take advantage of the orthogonality of 
the functions in performing the integration for force. The following observation 
greatly facilitates this difficulty: 

TO obtain products of the form Yy* YE , note that CD = @*, so that 

R2 B; = - L, @* L- a - L, @* L, 

Further, 

" + b* E1 HyYnI-I* 
1 

L, a)* = (L: <D)* 1 ( - L _  a)* = - E- +. 1 I n 1  
1,ni 

4 
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Consequently the field squared at the sphere's surface can be written 

VI. EVALUATION OF THE COMPONENTS OF FORCE 

The z-component of force is computed from the integral 

+ m q Y;"* YE] cos 0 dpd+ 

+ m q Yy* (A; Y;+, + €3; Y;_,)]d& 

where use has been made of Eq. (14), (15), and (6). The orthogonality relation 
(2) makes the integration trivial. After evaluating the constants from Eq. (12), and 
combining terms, the result is 

+ complex conjugate (16) 

The x- and y-components of force are most readily evaluated by first computing 
the integrals 

F,  + iF,  = - - // BZ sin e et+ RZ dpd+ 
2Po 

F , - i F  = - -  SJ B? sin o e-i+ ~2 ad+  

in view of the relations (7) and (8). 

After straightforward, though tedious, manipulation, the following result is 
obtained: 

- bl+l,m+1(Z2 + 1 + 2m) [(I + m + 2) ( I  + rn + I)] "} 
+ complex conjugate (17) 

5 
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F " = T C  C ( 2 z f 1 ) ( 2 z + 3 ) 1 "  R 2 L + 1 b ; m { b l + l , , - l ( Z ~ + 3 Z + 2 m ) [ ( Z - m + 2 ) ( Z - m +  l)]l'z 
Po l , m  (1 + 1)(1 + 2) 

+ bl+l.mtl(zz + I + 2m)[(Z + m + 2)(1 + m + 1)-J1A} 

+ complex conjugate (18) 

(If B; is written as 
ponents of force are easily seen to be 

i l l n t  Y t  (p, I$), where Alm = JJB;YT* dP d+, then the com- 

VII. RESTORING FORCES 

In assessing the stability of a magnetic suspension it is 
necessary to compute restoring forces for small displace- 
ments from an assumed equilibrium position. If the sphere 
is displaced relative to the applied field then it is neces- 
sary to express the field relative to the new origin in 
order to apply the formulas of Section VI. This transfor- 
mation is performed by expanding the potential of the 
applied field in a Taylor series. 

The potential at point P is 

@.,(xn,yo,zo) = @.I(% + 6% y + 6y, 2 + 82) 
A h A  

= @.,(x,y,z) t V a ~ I  1 ,,,,.- (6xi + 6yj + 8zk) 

(19) 

where x,, yo, zo are the coordinates of a field point P 
referred to the initial origin O,,, while x, y, z are the co- 
ordinates of the same point referred to a subsequent 
position 0 of the center of the sphere, displaced by 
ax, Sy, 6~ (see Fig. 2). In  terms of spherical coordinates 
referenced to these origins, Eq. (19) is written 

at P = C bl,,, rE Y 7 (pe, I$,,) = C bl,,, rl Yy ( P ,  4) 
A A A  + bl,, V [T' Y y  (p, +)] (6xi + 6yl f 6zk) 

(194 

L - % 4  
Fig. 2. Field coordinates relative to displaced origins 

6 
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where 

,!a / \ a  " a  v = t -  + 1 -  +k- 
ax T y  a2 

The derivations are evaluated by reference to Eq. (9), (lo), (ll), and (12): 

a 
rl Yy = (21 + 1) B;" rZ-l Ym f-I 

Equation (19a) becomes 

b ( D y  8-l Ym+l + FF r2-1 YT;1 ) 6y + (21 + 1) blln(B!,,, rl-l Y z ,  ) 6 z ]  
21 + 1 +- 

2i "" (19b) 1-1 

After evaluating constants and grouping terms, the above expression reduces to 

where 

P 2 m  = bfn, + - ; (; - 1 ;)nb2+l,,l [ ( Z  - m + 2) (I  - m + 1)]* -bl+l,,>I+l [(I + m + 2) (I  + m + l)]" 6x 

{bl+l,m-l [ ( I  - m + 2) (1 - m + I)]" +bl+i,m+i [ ( I  + m + 2) ( I  + m + I)]*} SY 

+ ( ~ ) " z b 2 + l . n I  [ ( I  + m + 1) ( E  - m +1)]'h62 (20) 

7 
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VIII. SPHERICAL HARMONIC REPRESENTATION OF THE FIELD 
DUE TO AN ARRAY 

A frequently encountered situation in magnetic levita- 
tion involves an array of coils whose axes intersect at a 
common point. Smythe (Ref. 2) gives the expression for 

p - I  

t 

wf#I=0 

Fig. 3. Coil coordinates 

OF CURRENT LOOPS 

the vector potential generated by a single circular loop 
in terms of Legendre polynomials. By setting - V @ = 
V X A, the scalar potential is readiIy deduced as 

The resulting potential for an array of coils involving 
intersecting axes can be transformed to a single axis by 
means of the “addition theorem for spherical harmonics.” 

Figure 3 depicts the coil coordinates. The resulting exp- 
ression for the scalar potential is 

@ A  = blii, T’ yy (h 4) 
1 ,  in 

XI. EXAMPLE OF A TILTED GRADIENT FIELD 

Consider the field given by 

which, by direct comparison with the addition theorem, 
is merely the field 

rotated about p = 0, + = ~ / 2  (the y axis) by an angle a. 
This is the situation depictcd in Fig. 4. That the origin 
is a position of zero force can be seen by examining Eq. 
(16), (17), and (18). Restoring forces are found by cal- 
culating the fllllL from Eq. (20): 

plo = (:)’la [3 sin a cos a ax + (3 cos2 a - 1) 621 

= (;)‘”{[-& cos‘a - 2” 1 
sin a cos a 6z 

1 3 +- ( - 2 ) ”  6Y - 7 

1 3 
f- ( - 2)lh 6y + sin a cos a Sz 

1 f lz0 = - 2 (3 cos‘ a - 1) 

pZ1 = - (+)’” sin a cos a = - p2-* 

8 2 2  = (q sin2 a = Pz2 

8 
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Fig. 4. Stability of levitation in a titlted gradient field 

then inserting these values into Eq. (16), (l'i), and (B), with the results: 

5 R3 F ,  = - - - [(3 cos' a + 1) 8; t 3 sin a cos a 8x1 

[(4 - 3 cos' a) 8s + 3 sin a cos a Sz] 

2 /.,I 

5 R: 
2 /.<I 

F = - _ -  

Since the virtual work function 
A 

-F (82 f 8$ + Szk) 

is positi\ e definite (for any value of a ) ,  the gradient-field configuration produces 
a stable magnetic levitation. 
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X. EXAMPLE OF CROSSED GRADIENT FIELDS 

Consider the field given by 

These are two Yg fields crossed at right angles. The origin is a position of zero 
force. The values for the Pr,,, are 

(-$)'j2 p,,) = 2(1 - 

($)'/* P*1 = 7jz- (1 - 2,) 6x + 'h (1 + ,) 6y 

($)"z B1-1 = 

62 

1 1 
(-2) 

1 1 
(2, - 1) 6x + - (-2)" (1 + 7) 6Y 

7) p z o  = 1 - - 2 

and the restoring forces are 

Such a field configuration is unstable only when 1 - 2, = 0, 1 + 7 = 0, or 
2 - r! = 0; i.e., when the coefficients of x', yz, zs,  respectively, are zero in the 
expression for @. 

1 0  
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NOMENCLATURE1 

h 1 0 - 7  

COS e 
spherical coordinates relative to the sphere 

radius of sphere 
magnetic field (weber/m2) 
applied field 

scalar potential of applied field 
induced field 

scalar potential of induced field 
B, + B, = total or resultant field 
scalar potential of total field 
normalized spherical harmonic function 
(SHF) defined in Eq. (1) 
coefficient in SHF expansion of @ A  

coefficient in SHF expansion of @ I  

coefficient in SHF expansion of displaced @A 

coefficient in SHF expansion of B; 

L, 

the operator . a  
24 

- 2 -  

the operator ei@ 

+ i cot e - L- the operator e-'@ 

(Lz, L,, L,, and L- are familiar in quantum 
mechanics as the total angular-momentum 
squared operator, the z-component of 
angular-momentum operator, the spin- 
raising operator, and the spin-lowering op- 
erator, respectively.) 
current in ith current loop 

semi-angle subtended at origin by ith cur- 
rent loop (see Fig. 3) 

spherical coordinates of center of ith cur- 
rent loop 

integers used as summation indices 

Zi 
yi 

1, m, p ,  q 

* denotes complex conjugates 

'MKS units used throughout. 
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SUBJECT: E r r a t a  for  TR 32-806 

Gentlemen: 

It is requested that a change a s  noted below be made in your copy of 
Je t  Propulsion Laboratory Technical Report No. 32-806, entitled "Force 
on a Superconducting Sphere in a Magnet Field: 
John T. Harding, dated September 1, 1965. 

The General Case,  " by 

On page 3, the right-hand column under the heading "111. Maxwell 
S t r e s s  Tensor"  should read  as follows: 

of a superconductor, Eq. (13) reduces to 

F = - B'dS 

where dS = R'd,,.d+ (cos ek + sin e cos +i + sin e sin + f )  
for a sphere (k = the p = 1 direction, i = the p = 1, 
9 = 0 direction, j = the p = 1, 4 = ~ / 2  direction). 

1 
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